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GRAPHIC SEQUENCES

A nonnegative integer sequence m = (dy, ..., dy) is graphic if 7 is
the degree sequence of some graph G.
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GRAPHIC SEQUENCES

A nonnegative integer sequence m = (dy, ..., dy) is graphic if 7 is
the degree sequence of some graph G.

4 2

3 5
4 2
n=(54,4,3,2,2)

In this case, we say that G realizes or is a realization of 7, and
write
m=7(G)or G = G(m).
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Question

Given a sequence of nonnegative integers m = (dy,...,dy), ism
graphic?
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LAYING OFF VERTICES

For instance, consider m = (3,3, 3,3, 3,3,2,2).
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LAYING OFF VERTICES

For instance, consider m = (3,3, 3,3, 3,3,2,2).

n'=(3,3,2,2,2,2,2)
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LAYING OFF VERTICES

For instance, consider m = (3,3, 3,3, 3,3,2,2).

v

7=(3,3,3,3,3.3,2,2)
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Theorem (Havel 1955, Hakimi 1962)

If = (di,...,dy) is a nonincreasing sequence of nonnegative integers,
then m is graphic if and only if

/

™ = (dQ—l,...,ddl+1 _17dd1+27--~7dn)

is graphic.
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Theorem (Havel 1955, Hakimi 1962)

If = (di,...,dy) is a nonincreasing sequence of nonnegative integers,
then m is graphic if and only if

/

™ = (dg—l,...,ddl+1 —1,dd1+2,...,dn)

is graphic.

Q"ﬂ University of Colorado Denver




Question

Given a sequence of nonnegative integers m = (di, . ..,dy), ism
graphic?

Havel (1955)/Hakimi (1962): Recursive (and constructive)
characterization.

Erd6s-Gallai Criteria (1960): Collection of n simple inequalities
(constructive proof in 2009 due to Tripathi, Venugopalan and

West).

G. Sierksma, and H. Hoogeveen (1991), “Seven Criteria for
Integer Sequences to be Graphic".
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DIVERSITY OF REALIZATIONS

n=(3,3,3,3,3,3,3,3,3,3)
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GENERAL QUESTIONS

Question

What properties occur within the family of realizations of a graphic
sequence m?
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GENERAL QUESTIONS

Question (Forcible)

Given a graph property P and a graphic sequence 7, does every
realization of ™ have P?
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GENERAL QUESTIONS

Question (Forcible)

Given a graph property P and a graphic sequence 7, does every
realization of ™ have P?

Question (Potential)

Given a graph property P and a graphic sequence 7, does at least one
realization of ™ have P?
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“FORCIBLE" THEOREMS

Many well-known theorems can be restated as forcible degree
sequence results.
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“FORCIBLE" THEOREMS

Many well-known theorems can be restated as forcible degree
sequence results.

Theorem (Dirac’s Theorem 1952)

If G is a graph of order n > 3 and the minimum degree of G is at least 3,
then G has a hamiltonian (spanning) cycle.
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“FORCIBLE" THEOREMS

Many well-known theorems can be restated as forcible degree
sequence results.

Theorem (Dirac’s Theorem 1952)

If G is a graph of order n > 3 and the minimum degree of G is at least %,
then G has a hamiltonian (spanning) cycle.

Theorem (Dirac’s Theorem 1952)

If m is an n-term graphic sequence, and every entry of 7 is at least 7,
then 7 is forcibly hamiltonian.

Q'T‘ University of Colorado Denver




“FORCIBLE" THEOREMS

Many well-known theorems can be restated as forcible degree
sequence results.

Theorem
If G is a planar graph on n vertices, then G has at most 3n — 6 edges.
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“FORCIBLE" THEOREMS

Many well-known theorems can be restated as forcible degree
sequence results.

Theorem
If G is a planar graph on n vertices, then G has at most 3n — 6 edges. J

Theorem
If 7 is an n-term graphic sequence with sum exceeding

6n — 12 = 2(3n — 6),

then 7 is forcibly nonplanar.

Q"ﬂ University of Colorado Denver




APPLICATION: TRACKING STD OUTBREAKS

Example: E. Liljeros et al., The web of human sexual contacts
Nature 411 (2001).
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Network members are surveyed and report their number of
partners. Partners remain anonymous.
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APPLICATION: TRACKING STD OUTBREAKS

Example: E. Liljeros et al., The web of human sexual contacts
Nature 411 (2001).

Network members are surveyed and report their number of
partners. Partners remain anonymous.

This gives the degree sequence of the sexual contact network.

University of Colorado Denver



APPLICATION: TRACKING STD OUTBREAKS

Example: E. Liljeros et al., The web of human sexual contacts
Nature 411 (2001).

Network members are surveyed and report their number of
partners. Partners remain anonymous.

This gives the degree sequence of the sexual contact network.

Data and behavioral information place restrictions on network
structure.

University of Colorado Denver



DEGREE-BASED GRAPH CONSTRUCTION

Let 7 be a graphic sequence, and let \V be the set of realizations of
7 that satisfy some collection of restrictions or preferred
characteristics.
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DEGREE-BASED GRAPH CONSTRUCTION

Let 7 be a graphic sequence, and let \V be the set of realizations of
7 that satisfy some collection of restrictions or preferred
characteristics.

Degree-based Graph Construction Problems then ask:
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DEGREE-BASED GRAPH CONSTRUCTION

Let 7 be a graphic sequence, and let \V be the set of realizations of
7 that satisfy some collection of restrictions or preferred
characteristics.

Degree-based Graph Construction Problems then ask:

IsN #£(?
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DEGREE-BASED GRAPH CONSTRUCTION

Let 7 be a graphic sequence, and let \V be the set of realizations of
7 that satisfy some collection of restrictions or preferred
characteristics.

Degree-based Graph Construction Problems then ask:

IsN #£(?

Is it possible to efficiently construct a member of N'?
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DEGREE-BASED GRAPH CONSTRUCTION

Let 7 be a graphic sequence, and let \V be the set of realizations of
7 that satisfy some collection of restrictions or preferred
characteristics.

Degree-based Graph Construction Problems then ask:
IsN #£(?
Is it possible to efficiently construct a member of N'?

Is it possible to efficiently construct all of N or determine |N|?
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DEGREE-BASED GRAPH CONSTRUCTION

Let 7 be a graphic sequence, and let \V be the set of realizations of
7 that satisfy some collection of restrictions or preferred
characteristics.

Degree-based Graph Construction Problems then ask:
IsN #£(?
Is it possible to efficiently construct a member of N'?
Is it possible to efficiently construct all of N or determine |N|?

Is it possible to efficiently construct a typical member of N'?

(Sample N uniformly at random)

Q"‘ University of Colorado Denver
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2-COLOR DEGREE-BASED GRAPH RECONSTRUCTION

Suppose that members of a network reported how many of two
different types of interactions, call them red and blue interactions.

Further, suppose that no pair of members can have both a red and
a blue relationship.
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2-COLOR DEGREE-BASED GRAPH RECONSTRUCTION

Suppose that members of a network reported how many of two
different types of interactions, call them red and blue interactions.

Further, suppose that no pair of members can have both a red and
a blue relationship.

Question
Is it possible to construct a network in which each member has the
prescribed number of red and blue interactions?

Q"‘ University of Colorado Denver
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AN EXAMPLE

Towe = (2,2,3,2,3,2,2)  and  meq = (2,3,0,4,2,2,3).
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AN EXAMPLE

Towe = (2,2,3,2,3,2,2)  and  meq = (2,3,0,4,2,2,3).

2 3 2 2
S|
2 2 3 {%~ 2
3 2 e 3
(2.2,3,2,3,2.2) (2.3,0,4,2,2,3)
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The Asymptotics of the Potential Function

Joint with:

Timothy LeSaulnier
NSA

Casey Moffatt
CU Denver

Paul Wenger
Rochester Institute of Technology
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POTENTIALLY H-GRAPHIC SEQUENCES

A graphic sequence 7 is potentially H-graphic if there is a
realization of 7 that contains H as a subgraph.
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POTENTIALLY H-GRAPHIC SEQUENCES

A graphic sequence 7 is potentially H-graphic if there is a
realization of 7 that contains I as a subgraph.

Example: 7 = (3,2, 2,2, 1) is potentially K3-graphic.
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SUBGRAPH INCLUSION

We are interested in studying subgraph inclusion in the
framework, inspired by the classical extremal literature.

Problem (The Turdan Problem)
Determine
ex(n, H),

the maximum number of edges in an n-vertex graph that does not
contain H as a subgraph.

Q'T‘ University of Colorado Denver




Given 7 = (dy, ...

ydp), let
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Given 7 = (dy,...,d,), let

o(m) = zn: d;.
i=1
Recall: o(7(G)) = 2|E(G)].
4 2
3 5
4 2
n=(54,4322)
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THE ERDOS-JACOBSON-LEHEL PROBLEM

Problem (Erd&s-Jacobson-Lehel 1991)

Determine o(H,n), the minimum even integer such that any n-term
graphic sequence with
o(r) > o(H,n)

is potentially H-graphic.

We refer to o(H,n) as the potential number of H.

Q"‘ University of Colorado Denver
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THE ERDOS-JACOBSON-LEHEL PROBLEM

Problem (Erd&s-Jacobson-Lehel 1991)

Determine o(H,n), the minimum even integer such that any n-term
graphic sequence with
o(m) = o(H,n)

is potentially H-graphic.

Problem (The Turan Problem)

Determine
ex(n, H),

the maximum number of edges in an n-vertex graph that does not
contain H as a subgraph.
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THE ERDOS-JACOBSON-LEHEL PROBLEM

Problem (Erd&s-Jacobson-Lehel 1991)

Determine o(H,n), the minimum even integer such that any n-term

graphic sequence with
o(m) = o(H,n)

is potentially H-graphic.

Problem (The Turdn Problem (Restated))

Determine the minimum integer ex(n, H) such that every n-term
graphic w with o(m) > 2ex(H,n) is forcibly H-graphic.

Q"ﬂ University of Colorado Denver




THE ERDOS-JACOBSON-LEHEL CONJECTURE

Conjecture (Erd6s-Jacobson-Lehel 1991)

o(Ky,n)=({—-2)2n—t+1)+2.

e
[

Y
TT——oe

n=((n=1)7(1=2)""")
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SOME KNOWN RESULTS

o(H,n) has been determined for several families, and various
specific graphs.

K, (E-J-L 1991; Gould, Jacobson, Lehel 1999; Li, Song 1998; Li,
Song, Luo 1999)
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SOME KNOWN RESULTS

o(H,n) has been determined for several families, and various
specific graphs.

K, (E-J-L 1991; Gould, Jacobson, Lehel 1999; Li, Song 1998; Li,
Song, Luo 1999)

K+ (Li, Yin 2003; Chen, Li, Yin 2004)

Unions of Cliques (F, 2007)

Graphs with a = 2 (F, Schmitt 2009)

Many families and sporadic small graphs.
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SOME KNOWN RESULTS

o(H,n) has been determined for several families, and various
specific graphs.

K, (E-J-L 1991; Gould, Jacobson, Lehel 1999; Li, Song 1998; Li,
Song, Luo 1999)

K+ (Li, Yin 2003; Chen, Li, Yin 2004)

Unions of Cliques (F, 2007)

Graphs with a = 2 (F, Schmitt 2009)

Many families and sporadic small graphs.

We determine o(H, n) asymptotically for all H.

Q"“ University of Colorado Denver
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BOUNDING o (H,n) FOR GENERAL H

If F'is an induced subgraph of H, we will write F* < H.
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BOUNDING o (H,n) FOR GENERAL H

If F'is an induced subgraph of H, we will write F* < H.

Let |H| = k. For
a(H)+1<i<k,

let
Vi(H) =min{A(F) | F < H, |F| =1i}.
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BOUNDING o (H,n) FOR GENERAL H

If F'is an induced subgraph of H, we will write F* < H.

Let |H| = k. For
a(H)+1<i<k,

let
Vi(H) =min{A(F) | F < H, |F| =1i}.

In other words, every i-vertex induced subgraph F' of H has
maximum degree at least V.

Q"‘ University of Colorado Denver
=




w; (H,n)

mi(H,n) is the degree sequence of the following graph.

7

(Vi-1)
—regular

o(m)~2(k—i)+V;—1)n
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w; (H,n)

mi(H,n) is the degree sequence of the following graph.

7

@\

o(m)~2(k—i)+V;—1)n

Claim

o(H,n) > o(m;).

Q"“ University of Colorado Denver
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THE ASYMPTOTICS OF THE POTENTIAL FUNCTION

Let

o = 2(k —1) +V; —1}.
o(H) a(H)rflaSXi§|H|{ (k=i + }
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THE ASYMPTOTICS OF THE POTENTIAL FUNCTION

Let

o(H) = 20k — 12 i — 1},
TH) = P gy PR D Vi T

Theorem (F, Moffatt, LeSaulnier, Wenger 2015+)
If H is a graph and n is a positive integer, then

o(H,n) =ac(H)n+ o(n).

Q"‘ University of Colorado Denver
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THE ASYMPTOTICS OF THE POTENTIAL FUNCTION

Theorem (F, Moffatt, LeSaulnier, Wenger 2015+)

If H is a graph and n is a positive integer, then

o(H,n) =ac(H)n+ o(n).

Theorem (The Erds-Stone-Simonovits Theorem)
If H is a graph with chromatic number x(H) > 2, then

ex(n, H) = (1 - ><(H1)—1> (Z) +o(n?).

Q"ﬂ University of Colorado Denver




EXAMPLE: P7

*—o—0o 00 00 *—o—0 00 00
V=2 V.,=2
G,=(2(7-6)+2—1)=3 5,=(2(7-7)+2-1)=1
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EXAMPLE: P7

*—o—0o 00 00 *—o—0 00 00
V=2 V.,=2
6,=(2(7-6)+2-1)=3 5,=(2(7-7)+2-1)=1

Claim
o(P7,n) =~ 4n ’

| University of Colorado Denver



EXAMPLE: Ky 1

a(Kypo1)+1=|Ki 1| =k
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EXAMPLE: Ky 1

a(Kypo1)+1=|Ki 1| =k
Vi=AK 1) =k—1
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EXAMPLE: Ky 1

O‘(Kl,kfl) +1= ‘Kl,kfll =k
G(Kip-1)=@2Fk—k)+Vy—1)=k—2

Claim
O'(Kl,kfl, ’I’L) ~ (k} — 2)n ’
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EXAMPLE: K},

Let K}, be the complete graph of order k.

a(Ky) =1
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EXAMPLE: K},

Let K}, be the complete graph of order k.

a(Ky) =1

For2 <: <k,

Vi = min{A(F) | F < Ky, |F| = i}
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EXAMPLE: K},

Let K}, be the complete graph of order k.

a(Ky) =1

For2 <: <k,

Vi = min{A(F) | F < Ky, |F| =i} = A(K;) =i — 1.

Q"‘ University of Colorado Denver
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EXAMPLE: K},

Let K}, be the complete graph of order k.

a(Ky) =1

For2 <: <k,

Vi = min{A(F) | F < Ky, |F| =i} = A(K;) =i — 1.

Gi(Kp) =2k —i)+(i—1)—1)=2k—i—2

Q"“ University of Colorado Denver
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EXAMPLE: K},

Let K}, be the complete graph of order k.

a(Ky) =1

For2 <: <k,

Vi = min{A(F) | F < Ky, |F| =i} = A(K;) =i — 1.

Gi(Kp) =2k —i)+(i—1)—1)=2k—i—2

Claim
o(Kg,n) ~ (2k —4)n

EJ-L:o(Kp,n) = (k—2)2n—k+1)+2

Q"“ University of Colorado Denver
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LOOKING FORWARD: STABILITY

Stability - what does a graphic sequence 7 that

is not potentially H-graphic, but

has o () close to o(H,n)

look like?
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LOOKING FORWARD: STABILITY

Stability - what does a graphic sequence 7 that

is not potentially H-graphic, but

has o () close to o(H,n)

look like?
Joint w/ C. Erbes, R. Martin and P. Wenger.
Editing Results (akin to Erd6s 1970; Pikhurko & Taraz 2005)

Stable & non-stable families.
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Degree Sequences of Uniform Hypergraphs

Sarah Behrens, Charles Tomlinson
University of Nebraska-Lincoln

Catherine Erbes
Hiram College

Stephen Hartke
University of Colorado Denver

Ben Reiniger, Hannah Spinoza
University of Illinois at Urbana-Champaign
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k-UNIFORM HYPERGRAPHS

A hypergraph G is k-uniform, or is a k-graph if every edge of G
contains exactly £ vertices.

The degree sequence of a k-uniform hypergraph H is the list of
the degrees of vertices in H.
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k-UNIFORM HYPERGRAPHS

A hypergraph G is k-uniform, or is a k-graph if every edge of G
contains exactly £ vertices.

m(H) = (4,3,2,2,1)

The degree sequence of a k-uniform hypergraph H is the list of
the degrees of vertices in H.

Q"‘ University of Colorado Denver
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HYPERGRAPHS AS NETWORKS

There are many complex networks modeled using hypergraphs:

Social Networks: family dynamics, group conversation,
overlapping communities.

Biological Networks: protein interactions, chemical reactions.

Education Networks: classroom collaborations, group
discussions.

University of Colorado Denver



k-GRAPHIC SEQUENCES

A nonnegative integer sequence 7 is k-graphic if it is the degree
sequence of a simple k-uniform hypergraph G.
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k-GRAPHIC SEQUENCES

A nonnegative integer sequence 7 is k-graphic if it is the degree
sequence of a simple k-uniform hypergraph G.

Example: m = (3,3,1,1,1)

8!

7 is 3-graphic (but not 2-graphic).

Q"“ University of Colorado Denver
=



k-GRAPHIC SEQUENCES

A nonnegative integer sequence 7 is k-graphic if it is the degree
sequence of a simple k-uniform hypergraph G.

Example: m = (3,3,1,1,1)

=

7 is 3-graphic (but not 2-graphic).

The k-graph G k-realizes or is a k-realization of 7.

Q"“ University of Colorado Denver
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k-GRAPHIC SEQUENCES

Question

Given a sequence of nonnegative integers m = (dy, . ..,dy), is
graphic?

University of Colorado Denver



PRIOR WORK

Bhave, Bam and Deshpande (2009) give an Erd6s-Gallai-type
characterization of loopless linear hypergraphs.
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PRIOR WORK

Bhave, Bam and Deshpande (2009) give an Erd6s-Gallai-type
characterization of loopless linear hypergraphs.

Numerous (nontrivial) necessary conditions:

D. Billington (1988)
Choudoum (1991)
Achuthan, Achuthan, and Simanihuruk (1993)
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PRIOR WORK

Bhave, Bam and Deshpande (2009) give an Erd6s-Gallai-type
characterization of loopless linear hypergraphs.

Numerous (nontrivial) necessary conditions:

D. Billington (1988)
Choudoum (1991)
Achuthan, Achuthan, and Simanihuruk (1993)

Achuthan, Achuthan and Simanihuruk: None of these necessary
conditions are sufficient.

Q"“ University of Colorado Denver
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A CHARACTERIZATION!!

Theorem (Dewdney 1975)

Let m = (dy, . . .,dy) be a nonincreasing sequence of nonnegative
integers. m is k-graphic if and only if there exists a nonincreasing
sequence

7 =(d,....d.)
of nonnegative integers such that
n’is (k — 1)-graphic,
Yo odi = (k—1)dy, and
' =(dy —dy,d3s — ds,...,dy — dy,) is k-graphic.

Q"ﬂ University of Colorado Denver




DEWDNEY VISUALLY

The (k — 1) graph obtained by deleting v; from its incident edges
is the link of v.

W

X8/
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DEWDNEY VISUALLY

The (k — 1) graph obtained by deleting v; from its incident edges
is the link of v.
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DEWDNEY’S THEOREM

Theorem (Dewdney 1975)

Let m = (dy,. . .,dy) be a nonincreasing sequence of nonnegative
integers. m is k-graphic if and only if there exists a nonincreasing
sequence

7 = (dy,...,d)) the "link sequence”

of nonnegative integers such that

n'is (k — 1)-graphic, - link seq. is (k — 1)-graphic

Yoo dl = (k—1)dy - link seq. can be "expanded” to include vy with
the right degree

" = (dy —db,ds — ds,...,d, — d,) is k-graphic.
completed link + vy can be added to the rest of the graph to realize .
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DEWDNEY’S THEOREM

Theorem (Dewdney 1975)

Let m = (dy,. . .,dy) be a nonincreasing sequence of nonnegative
integers. m is k-graphic if and only if there exists a nonincreasing
sequence

7 = (dy,...,d)) the "link sequence”

of nonnegative integers such that

n'is (k — 1)-graphic, - link seq. is (k — 1)-graphic

Yoo dl = (k—1)dy - link seq. can be "expanded” to include vy with
the right degree

" = (dy —db,ds — ds,...,d, — d,) is k-graphic.
completed link + vy can be added to the rest of the graph to realize .

Q"ﬂ University of Colorado Denver




Havel-Hakimi requires that we only check one residual sequence:

(do—1,...,dgy41— 1, dg 49, ..., dy).
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Havel-Hakimi requires that we only check one residual sequence:

(do—1,...,dgy41— 1, dg 49, ..., dy).

Dewdney’s Theorem requires us to search all (k — 1)-graphic
sequences with sum (k — 1)d; to test possible residual/link
sequences.
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Havel-Hakimi requires that we only check one residual sequence:

(do—1,...,dgy41— 1, dg 49, ..., dy).

Dewdney’s Theorem requires us to search all (k — 1)-graphic
sequences with sum (k — 1)d; to test possible residual/link
sequences.

Problem

Efficiently characterize k-graphic sequences, or show that the associated
decision problem is N P-complete.
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Havel-Hakimi requires that we only check one residual sequence:

(do—1,...,dgy41— 1, dg 49, ..., dy).

Dewdney’s Theorem requires us to search all (k — 1)-graphic
sequences with sum (k — 1)d; to test possible residual/link
sequences.

Problem

Efficiently characterize k-graphic sequences, or show that the associated
decision problem is N P-complete.

In lieu of an efficient characterization, we obtain several sharp
sufficient conditions.

Q"‘ University of Colorado Denver




SUFFICIENT CONDITIONS

Theorem (BEFHRST 2013)

Let m = (dy,. . .,dy) be a nonincreasing sequence with

di = A and de > A — 1.

=1
> A
(1) =

then m is k-graphic. This result is sharp.

If k divides ¥(d;) and
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SUFFICIENT CONDITIONS

Corollary (BEFHRST 2013)

Let m = (dy, . ..,dy) be a nonincreasing sequence with dy = A, and let
p be the minimum integer such that

p—1
A< .

o(r) > (A-1)p+1,

If k divides Xd; and

then m is k-graphic. This result is sharp up to a constant factor
dependent on k.
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SUFFICIENT CONDITIONS

Corollary (BEFHRST 2013)

Let m = (dy, . ..,dy) be a nonincreasing sequence with dy = A, and let
p be the minimum integer such that

p—1
A< .

o(r) > (A-1)p+1,

If k divides Xd; and

then m is k-graphic. This result is sharp up to a constant factor
dependent on k.

Proof uses poset methods akin to Aigner-Triesch (graphs - 1994),
Duval-Reiner (2002 - hypergraphs) and others.

Q"ﬂ University of Colorado Denver




A LENGTH-BASED SUFFICIENT CONDITION

Theorem (Barrus, Hartke, Jao and West 2012)

Let m = (dy, . .., dy) be a nonincreasing 2-graphic sequence with

di = A and dn, = 0.

If

(A+6—-1)2—¢
>
"= 45 ’
where
(=A+6+1 (mod?2),

then m is 2-graphic.

Improves upon a result of Zverovich and Zverovich (1992) when
A + § is even.
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SUFFICIENT CONDITIONS

Corollary (BEFHRST 2013)

Let m = (dy, . .., dy) be a nonincreasing sequence with
di = A and dn =0,

and let p be the minimum integer such that
p—1
A< .

(A—1Dp—A+6+1
n )

- 0

If k divides o () and

then m is k-graphic.

Q"ﬂ University of Colorado Denver




2-SWITCHES: NAVIGATING THE REALIZATION SPACE

The 2-switch (or edge-exchange or rewiring or infusion)
operation:

Y &

<
o

Theorem (Petersen 1891)

If G1 and Gy are realizations of a 2-graphic sequence , then G can be
transformed into G by a finite sequence of 2-switches.

University of Colorado Denver




EDGE EXCHANGES IN k-UNIFORM HYPERGRAPHS

What about k-graphic sequences?

u y u Y
—
-

[ X [ X
uov ux
—
yx yo
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A HYPERGRAPH 2-SWITCH

e— u+v
—» ‘a
e'—v+u
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A HYPERGRAPH 2-SWITCH

e—u+v
EZ-<
e'—v+u

Theorem (BEFHRST 2013)

If Gy and G are realizations of a k-graphic sequence, then G can be
transformed into G by a finite sequence of 2-switches.
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This extends a result of Kocay and Li (2007) for k£ = 3.

There is an issue, however - the intermediate graphs between G
and G2 may have multiple edges.
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AN UNAVOIDABLE PROBLEM

An i-switch is exchanges i edges for i non-edges in a graph, while
maintaining the degree of each vertex.

Theorem (Gabelman 1961; BEFHRST 2013)

For every k > 3, there is a k-graphic sequence m with distinct simple
realizations such that for any i < k, there is no i-switch that can be
performed to change one realization into another.
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EXAMPLE: k = 3
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EXAMPLE: k = 3

Weight vertices so that the
only 3-sets with zero sum are
rows or columns.
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EXAMPLE: k = 3

Weight vertices so that the
only 3-sets with zero sum are
rows or columns.

Edges are rows and 3-sets
with positive sum.
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EXAMPLE: k = 3
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EXAMPLE: kK = 3, CONT.

To exchange edge set F; and
nonedge set F», we need

Z Zwt(v) = Z Zwt(v).

ecky vee ecFy vEe
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EXAMPLE: kK = 3, CONT.

To exchange edge set F; and

nonedge set F», we need
I
‘ ‘ Z Zwt(v) = Z Zwt(v).
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EXAMPLE: kK = 3, CONT.

To exchange edge set F; and
nonedge set F», we need

Z Zwt(v) = Z Zwt(v).

ecky vee ecFy vEe

This means F; C Rows and
F5 C Columns.

Maintaining vertex degrees
requires F; = Rows and
Fy = Columns.
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TRAVERSING THE SIMPLE REALIZATIONS

Problem

Determine a minimal family of edge exchanges such that, given
realizations Hy and Hy of a k-graphic sequence m, Hy can be
transformed into Hs by a sequence of edge exchanges such that each
intermediate k-graph is simple.
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PICK A DIRECTION AND GO!

The realm of k-graphic sequences is wide open - go forth and
explore!

Theorem (Gu and Lai 2013)

Let m = (dy, . ..,dy) be a nonincreasing k-graphic sequence. Then m has
a t-edge-connected realization iff

This extends results of Boonyasombat (1984) for ¢ = 1 and
Edmonds (1964) for graphic sequences.
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